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.&tract —An algorithm suitable for the computer-aided design of trans-

mission lines is used to model the propagation of picosecond and subpico-

second electrical signals on superconducting planar transmission lines.

Included in the computation of a complex propagation factor are geome-

try-dependent modaf dispersion and the frequency-dependent attenuation

and phase velocity which arise as a result of the presence of a superconduc-

tor in the structure. The results of calculations are presented along with a

comparison to experimental data. ‘f’he effects of modal dispersion and the

complex surface conductivity of the superconductor are demonstrated, with

the conclusion that it is necessary to incorporate both phenomena for

accurate modeling of transient propagation in strip transmission lines.

I. INTRODUCTION

T HE NEED TO increase the speed of response of

many systems and components has led to great ad-

vances in the field of ultrafast, very high frequency elec-

tronics. Novel devices operating in the millimeter-wave-

length range [1], [2] and new techniques for the generation

and detection of electrical transients with terahertz band-

width [3]–[6] have been designed. The progress in millimet-

er-wave integrated analog and digital circuits has led to

the demand for a means to transmit waveforms of short

duration from one location to another while maintaining

fidelity. Since it has been discovered that it is difficult to

propagate a signal with broad bandwidth on conventional

striplines [7], [8], it is necessary to investigate variations on

the design of transmission structures—such as the use of

superconducting striplines—and understand how these de-

signs affect electrical signals. From the circuit point of

view, it is desirable to have a design tool developed which

is capable of modeling these new transmission lines.
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The room-temperature study of broad-bandwidth wave-

form propagation in microstrip and coplanar transmission

lines includes both experimental [8], [9] and theoretical

work [1 O], [11]. Signal distortion, which can be quite seri-

ous for these lines, has been attributed mainly to two

factors: a frequency-dependent propagation velocity due

to modal dispersion, and a frequency-dependent attenua-

tion due to the skin effect in the conductors.

The study of picosecond pulse propagation on supercon-

ducting transmission lines consists of a theoretical treat-

ment for microstrip by Kautz [12] and experimental in-

vestigations on coplanar stnplines by researchers at the

University of Rochester [13], [14] and at IBM [15], [16].

These studies took into account the effect of the frequency

dependence of the attenuation and phase velocity on a

signal due to the complex surface conductivity of the

superconductor. The results indicated a substantial signal

attenuation only at frequencies above the energy gap. As

opposed to the Rochester work [13], where dispersive

transmission lines were studied, Kautz’s calculations [12]

neglected any dispersive behavior due to the line geometry,

and the IBM reports [15], [16] argued that dispersion was

insignificant because of the small dimensions of their

structure. In all cases, improved transmission due to the

almost lossless nature of the superconductor was evident,

although the waveforms were still found to be distorted.

The contention of this paper is that superconducting

transmission lines are vastly superior to normal-conduc-

tion media, and that to model accurately the propagation

of ultrafast signals on these structures, one must consider

modal dispersion and dielectric properties of the substrate,

as well as the complex, frequency-dependent conductivity

of the superconductor. We accomplish this goal through a

comprehensive study of the transmission line propagation

factor, and show that our model provides a very accurate,

quantitative description of pulse propagation.

Our paper is organized as follows. Section II describes a

practical algorithm for modeling transient propagation,
including a general account of the characteristics of the

transmission line and its frequency dependence due to

geometry and to the presence of the dielectric substrate

and superconductor. The details of the implementation of
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the algorithm are presented in Section III, and examples of

calculations for pulse propagation under different condi-

tions appear in Section IV. Section V displays the out-

standing agreement between the experimentally measured

transients on a superconducting coplanar stripline and the

calculations for that structure, while Section VI sum-

marizes the work.

II. DESCRIPTION OF THE TRANSMISSION LINB

The configuration under consideration is schematically

shown in Fig. 1. A short, wide-band signal F’( ~, O) is

launched at the input of the transmission line (z= O),

which is assumed to be long enough and/or is properly

terminated such that reflections are not present. Under

these conditions the propagated signal V( 7, z) at point z

along the line can be evaluated, knowing V( ~, O) and

several line properties: characteristic impedance 20 and

complex propagation factor Y(~). These quantities are

defined in terms of the series impedance (Z) and shunt

admittance (Y) per unit transmission line [17], [18]: ZO

= ~ and y =~. By substitution we also find that

y = Z/ZO. The propagation factor can also be divided into
its real and imaginary parts:

Y(f) =~(f)+jB(f) (1)

where the real part is defined as attenuation and the

imaginary component as a phase factor. The former is

affected by conductor and dielectric losses, while the latter

is mainly influenced by the line geometry (modal disper-

sion) and the conductor:

a(~) =Re[y($)] =ad(f’)+ a,(~) (2)

D(f) =Im[y(~)l =Bmo,al(~)+&.(~). (3)

If y( j’ ) is precisely known, one can Fourier transform the

input transient, F{ E’( ~, O)}, and “propagate” all frequency

components along the line; the waveform, after propagat-

ing a distance z, is then recovered by taking an inverse

Fourier transform of the resulting spectrum:

V(~, z) =F-’[F{ V(~,O)} .exp{-y(~)z}]. (4)

This scheme, together with a comprehensive computa-

tion of y(~), represents the essence of our modeling of the

picosecond pulse propagation characteristics of the super-

conducting transmission line. It is clear that a successful,

quantitative model must include all the physical mecha-
nisms leading to the frequency dependence of the propa-

gation factor. In the rest of this section the major factors

contributing to y( ~ j will be reviewed.

For the coplanar striplines, the series impedance, with

inductive and resistive contributions, and the shunt admitt-

ance, containing capacitive and conductive parts, are given

as follows:

z= jz~fklgl + -%(f)g2 (5)

Y= 2~~co(jc~ff + c,tan8)/gl (6)

where j is frequency, p ~ and co are the permeability and

permittivity of vacuum, tan 8 is the loss tangent of the

I I
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Fig. 1. Schematic diagram of transmission line, where V(7,0) is signal

input, and V( T, z) is the output after propagation a distance z.

substrate material, and Z,(~) is the conductor complex

surface impedance described later. The effective perrnittiv-

it y c;ff is described in the next section, and c, is the

relative permittivit y of the substrate. The functions gl and

g2 depend upon the transmission line geometry and can be

derived from design equations [19] (see the Appendix).

Throughout the paper we use the coplanar stripline as

an example, although it should be realized that our conclu-

sions are valid for any type of planar transmission line.

The studies of other structures can be accomplished by

simple modifications of several geometric parameters in

the design equations. These changes can be easily imple-

mented into the algorithm.

A. Modal Dispersion

The coplanar transmission lines (Fig. 2) are inherently

dispersive—they cannot support a pure TEM wave [20].

The fringing electric field lines shown in Fig. 2 experience

an inhomogeneous dielectric, leading to discontinuities in

the field which cause contributions from longitudinal com-

ponents. A closed-form expression for the effective permit-

tivity encountered by a wave which is influenced by the

substrate–superstrate interface was given for the coplanar

geometry by Gupta et al. [19]:

c
— = C:ff

‘A[td{178’10g(:)+17’}
1+ 7{0.04– O.7k +0.01(1–0.16,)(0.25+ k)} (7)

where k = s/(s + 2w), and h, s, and w are defined in Fig.
2. Therefore, eeff (the subscript r will be subsequently

omitted) for the coplanar stripline is an average of the

permittivities from the dielectrics involved,l with the ex-

pression in the square brackets representing a correction

term for the geometry of the line.

Strictly speaking, expression (7) is valid only when the

wavelength of the radiation is much greater than the

transverse dimensions of the stripline, when a quasi-TEM

mode propagation may be assumed. As the wavelength

1Throughout this paper, we assume that the permittivity of the super-
strata is equal to one.
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Fig. 2. Transverse cross section of coplanar stripline with representative

electric-field lines shown.
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Fig. 3. Relative effective perrnittivity of coplanar striplines versus

frequency. Both curves are for l-mm-thick Si, while the step on the left

is for a stripline with w =s = 50 ym and t = 500 nm, and the other has

s=lOpm, w=5pm, andt= 300nm.

decreases and approaches the dimensions of the coplanar

line, the longitudinal components on the line cause the

effective permittivity to become frequency dependent.

Full-wave analyses [21], [22] and semiempirical techniques

[23], [24] have been employed to generate the dielectric

function in microstrip lines. An approximate expression

has been derived through curve fitting to the exact analysis

[25], and extended by curve fitting to the dispersion data

of coplanar waveguide [11]’ to give

where ceff(0) is the quasi-static value given

~/~=H is the normalized frequency, and

by (7), G =

(9)

is the cutoff frequency above which the first non-TEM

mode enters in microstrip. The constants a and b depend

on the line geometry. The result of (8) is shown versus

frequency in Fig. 3 for two different coplanar striplines in

order to demonstrate the change in perrnittivity with both

frequency and geometry.

From this analysis we determine the contribution to the

phase factor due to the modal dispersion. The phase

velocity, defined as

u@=27rf/’p(f) (lo)

can be combined with the equivalent expression for the

velocity of propagation, u = c\~~, to give

%dal=(~)fi. 01)

The result is that the frequency composition of a signal

below the “cutoff” (Fig. 3) will propagate faster than

higher frequencies. Signals with enough bandwidth to ex-

tend into both regions will experience dispersion. It should

be pointed out that the variation in permittivity extends

over many decades of frequencies so that, for picosecond

pulses, modal dispersion will generally be present even for

very narrow lines.

B. Superconducting Dispersion and Loss

The skin-effect attenuation for a normal conductor de-

pends strongly on the ZO of the transmission line and the

surface resistivit y of the conductor. A different situation is

encountered for superconducting lines, which feature low

transmission loss up to frequencies below a characteristic

energy gap. However, the existence of the energy gap of a

superconductor leads not only to drastic variations in the

attenuation experienced by a signal, but also to significant

changes in its phase velocity— a superconductor is a” per-

fect” conductor only for dc currents. All these features’ are

a strong function of temperature, and above a certain

critical temperature, TC, the energy gap A(T) vanishes and

the superconductor becomes a normal metal.

The complex surface impedance of the conductor [18] is

given by

Z,(f) = [j2n~p0/o]l’2coth {[j2wf~Ou]1’2t } (12)

where o is the electrical conductivity, and for a normal

metal, simply a real constant. For a superconductor, the

effect of A(T) is that u is complex and frequency depen-

dent:

o(.f)=ul(.f) -ju2(.f) (13)

where UI and Uz can be derived from the Mattis–Bardeen

theory [26]:

;=:~md~[j(~)-f(~+~.)]
n

g(E)

“ (E2 - &)l/2[(E + j@2- A2]1/2

:0 j“”:UdE [1 -2f(E + h)]+—

g(E)

“ (E2 - &)1Z2[(E + h@)z_ &]l/2 (14a)

U2

:0 ~A_~ti _~dE[l-2f(E + ho)]—.—
o,,

g(E)

“ (AZ_EZ)l/2[(E+ fi@)2_L2]1/2
(14b)
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Fig. 4. Calculated frequency dependence of the normalized real and
imaginary parts of conductivity for niobium at 2 K using
Mattis-Bardeen theory [26].

where g(E) = E2 + A2 + IIuE, o = 2~f, o. is the conduc-

tivity for the normal state of the superconductor, A = A(T),

and f(E) is the Ferrn-Dirac distribution function. The

second integral for UI is zero for h u < 2A, since it repre-

sents conduction due to frequencies above the gap energy,

and the lower limit of integration for U2 changes to – A if

h co> 2A. The frequency dependence for the real and imag-

inary parts of the conductivity is given in Fig. 4 for

niobium (Nb), which has T, = 9.4 K. The most distinctive

feature is the large increase in real component (ul) and the

decline of the imaginary component (uz) at a frequency

corresponding to the energy gap.

The expressions for attenuation due to the conductors in

a coplanar stripline in dB/unit length and the correspond-

ing phase shift can be written using previous definitions:

[1z,
aC=Re[y], =Re-Z g2

o

Mf?c=hn[y]. =hn ~ gz

(15)

(16)
LLo J

where gz is again given in the Appendix. From the full

expressions for Z,, Zo, and gz, closed-form expressions

are calculated for aC and PC and graphically shown in Fig.

5 for an arbitrary Nb coplanar stripline at T= 2 K. The

loss a, [Fig. 5(a)] displays a large increase at the energy

gap frequency. From (2), this attenuation, along with any

dielectric contribution, directly determines a(f) in the

propagation factor. The phase velocity, given by (10), is

shown in Fig. 5(b). At lower frequencies, this quantity is

constant, indicating dispersionless operation. For the

broad-band signals of interest, however, the phase velocity

decreases with frequency even for frequencies much less

than 2A/ A. By (3), the imaginary contribution due to

conductors, /3C, adds to the modal phase factor &O~,l in

order to give the full phase factor, P(f), for the signal.

It should be noted that the superconducting loss factor

contains a temperature dependence through the complex

conductivity, and that the attenuation below the energy

gap increases toward the normal value as the critical

,0-1
!
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T=2K
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I
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Frequency (Hz)
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Fig. 5. Contribution of the superconducting energy gap to (a) attenua-

tion and (b) phase velocity of Nb coplanar strirdine at 2 K. Both

quantities VW sharply ne,~ the energy gap freque~cy of 740 GHz

temperature is approached. Therefore, from the practical

point of view, one should operate superconducting trans-

mission lines at temperatures much lower than TC.’

C. Dielectric Loss

Without attenuation, a dispersed signal would contain

the same amount of energy as its input. The attenuation

due to the dielectric substrate material is, in general, much

less than that due to the conductors. Except in the case of

very long propagation, the dielectric loss may become

significant at cryogenic temperatures only when the sub-

strate has a relatively high conductivity (such as a highly

doped or narrow-band semiconductor, e.g., InSb); or it

may have a dielectric resonance that follows the Debye

equation or that has piezoelectric or ionic origin. For the

case of substrate loss, ~ is governed by the Krarners-Kronig

relations, and the expression for ad derived from earlier

definitions is represented’by [27]:

ceff( f ) –1 tan~
ad= Re[y]d =27.3 ‘

/% fr-l ~. (17)

in dB/unit length, where A o is the free-space wavelength.

This frequency-dependent loss factor is affected negligibly

by line geometry [27].

Radiation is considered to be less significant for our

lines, and has thus’ been omitted from the treatment, along

with the negligible contribution of dielectric loss to ~.
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III. MODEL IMPLEMENTATION

The algorithm outlined in the previous section has been

implemented in a computer program to facilitate compari-

son with actual experiments. Two types of input transients

have been examined. The first was a normalized Gaussian

input, which corresponded closely to the IBM experiments

[15], [16]. A second type of input, which realistically simu-

lates the integrating nature of a photoconductive switch,

was used in our experiments, described in a later section

(see also [13] and [14]). The waveform had a rising edge

given by an error function matched with an exponentially

rising foot in front, followed by a plateau and an exponen-

tially falling segment,

The scheme presented in (4) calls for the use of Fourier

techniques and complex algebra in order to calculate prop-

agating waveforms. The transformations to and from the

frequency domain were performed by computing the Fou-

rier components A of a real vector of length N. The output

was defined as x, where

(18)
,=0

andk= O,..”, N – 1. The prime factors of N were found

and Cooley–Tukey techniques were applied to each one.

The integration of the expressions (14a) and (14b) was

also performed numerically, using a standard algorithm

employing cautious adaptive Romberg extrapolation [28].

The energy gap parameter A(T), which was used in these

expressions, has simply been tabulated versus temperature

from existing graphs [29], with the value closest to the

desired temperature extracted.

It was indicated in Section II-A that (8) has been

extended by curve fitting to dispersion data. This was done

by choosing the constants a and b associated with the

normalized frequency G. A calculation for the propagation

factor at one distance on a normal coplanar stripline was

compared to experimental data to set the values on a and

b for a line having w =s = 50 pm and h =1.0 mm; we

found a = 23.5; b = 0.9. For the other line geometry con-

sidered by us (s =10 pm, w = 5.0 pm, and h = 1.0 mm,

corresponding to t% case of [15] and [16]), we do not have

available the experimental propagation factor, and a sim-

ple geometric scaling (see e.g. [11]) was used to obtain

a = 260 and b = 0.9.

IV. EXAMPLES OF COMPUTER-SIMULATED RESULTS

A series of computations has been made in order to

examine the propagation characteristics of short pulses on

superconducting coplanar lines under different possible

experimental conditions. The usefulness of the algorithm

for computer-aided design of the coplanar transmission

lines has also been tested. For the purpose of demonstra-

tion we use the Gaussian input pulses and Nb lines [A ~~(T

= 2 K) = 1.525 meV—corresponding to a frequency of 740

GHz, normal resistivity P.(T = 10 K)= 1.10-5 Q” cm] on

the silicon substrate (t, =11.8, tan 8s 10- 7). The trans-

mission line structures considered in this section have the
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Fig. 6. Calculations for example
with 1 ps FWHM input for 1.0,

+------10 ps— i

superconducting coplanar stripline
3.0, 5.0, and 10.0 mm propagation

distances. (a) Full cal~ulation. (b) Superconductor contnb~tio~ ~nly.

following parameters (see Fig. 2): s =10 pm, w = 5.0 pm,

t= 300 nm, and h =1.0 mm.

The results shown in Figs, 6-8 are presented for several

pulse durations with bandwidths below and extending into

the regime of frequencies affected by the energy gap. In

order to determine the amount of pulse distortion due to

the competing dispersion mechanisms, two sets of calcula-

tions appear. in Fig. 6, one representing modal dispersion

and superconducting energy gap effects considered to-

gether, and one for only the energy gap effects (TEM

propagation). The pulse propagation characteristics on su-

perconducting and normal lines are directly compared in

Fig. 7. Finally, the cutoff frequency for the modal disper-

sion of the line has been varied by changing (Fig. 8)

coplanar structure parameters.

For a l-ps-FWHM (full width at half maximum) input

pulse (Fig. 6), there is virtually no energy in frequencies

above the Nb energy gap. There are, however, frequencies
in the pulse that fall within the region of decreasing phase

velocity shown in Figs. 3 and S(b). This results in the

dispersion seen in Fig. 6(a). In Fig. 6(b) we assume a pure

TEM-wave propagation and thus the dispersion is limited

to the Nb electrodes. As the pulse propagates through 1.0,

3.0, 5.0, and 10.0 mm, the higher frequencies travel more
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(a) (b)

l— 10 ps ~ 1— 10 ps —4

Fig. 7. Calculations with 400 fs FWHM input for example. (a) Super-
conducting coplanar stripline for 1.0 and 3.0 mm propagation dis-

tances. (b) Normaf coplanar stripline for 0.5 and 1.0 mm propagation

distances.
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slowly, resulting in longer rise time, increased pulse width,

and ringing on the back of the pulse. These effects increase

with transmission distance and are more pronounced for

the experimentally realistic case that includes modal dis-

persion (see also discussion in Section V).

The input pulse in Fig. 7 has a 400-fs FWHM and a

frequency content well past 1 THz. In addition to disper-

sion, the traces in Fig. 7(a) now display rapid attenuation

above the gap frequency. Despite the short propagation

distance, distortion takes place more quickly as compared

with that for the waveform in Fig. 6(a). Fig. 7(b) indicates

the benefit gained by the use of superconducting lines. A

400-fs-FWHM input pulse, after propagation on a normal

line for only 0.5 and 1.0 mm, experiences a substantial

attenuation, in addition to the usual dispersion represented

by the stretched rise time. The attenuation is so severe tk,at

all ringing has been damped out, and for longer propa-

gation distances (not shown) the pulse becomes negligibly

small.

The input to Fig. 8(a) is a 2.O-ps-FWHM pulse. The

propagation is calculated for correspondingly longer

lengths and shows a decreased dispersion due to the al-

most nonexisting superconducting dispersion and the di-

minishing bandwidth present on the step of the permittiv-

ity curve. In fact, in this case the propagation is practically

lossless, and for short distances nearly dispersion free.

To show the effect of decreasing the cutoff frequency on

the modal dispersion (Fig. 8(b)), we used again a l-ps-

FWHM pulse, but on the wide coplanar line. The effect of

the modal dispersion (see Fig. 3) now spreads another

decade of frequencies lower, compared with the smaller

lines, and the result is the drastic ringing after only 3 mm

of propagation, nearly all due to modal dispersion.

V. COMPARISON WITH EXPERIMENT

The previous section has served to approximate the

conditions of earlier experiments [15], as well as to indicate

what results would be expected in propagating a fast

transient on superconducting transmission lines. One no-

tices the close resemblance of the model calculations to the

experimental data reported [16], although no fully quanti-

tative comparison can be made for lack of detailed infor-

mation on these experiments.

As a separate, controlled check, we compared the model

calculations with a series of our experiments [13], [14]

where all the experimental parameters were known.

Experimentally, short pulses and broad-band signals
0.4 - were generated and characterized using ultrafast optical

sources and the electro-optic sampling system [30]. In one
0.0

experiment, transients with a 10–90 percent rise time of

v]
-“ 4 ‘ .o.,~

l— 2ops — — —

Fig. 8. (a) Calculations for example superconducting stripline with 2 ps

FWHM input for 5.0 and 10.0 mm propagation distances. (b) Calcula-

tions for superconducting coplanar stnpline with w =s = 50 pm and a

1 ps FWHM input. The considerable ringing component is mainly due

to modal dispersion.

1.0 ps and a relaxation time on the order of a few picosec-

ond were launched onto a superconducting transmission

line with coplanar iridium (In) striplines [AI.(T = 1.8 K)=
0.525 meV—corresponding to a frequency of 250 GHz,

p,,(?’ = 4.2 K) = 2.7.10-6 Q ocm] deposited on lithium

tantalate ( ~r = 43). The input pulse, with spectral compo-

nents greater than the gap frequency, was simulated to

begin where it was first measured (less than 75 pm from
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(a) (b)

Fig. 9. Comparison of (a) experimental data and (b) calculations for
propagation on In superconducting coplanar stripline on lithium
tantalate substrate. Temperature was 1.8 K.

the source). This was designated as 0.0 mm, and the signal

was sampled at 0.15, 0.3, 0.9, and 1.5 mm of propagation.

Different characteristics were observed on the output,

shown in Fig. 9: a ringing was noted on top of the plateau

of the transient, and a distinctive pulse sharpening resulted

as the slower, high-frequency front end of the pulse piled

up on the faster moving plateau. The rise time also in-

creased, as calculated [14].

One can observe that our computations (Fig. 9(b)) suc-

cessfully simulate, both qualitatively and quantitatively, all

propagation characteristics observed in the experiment

(Fig. 9(a)). We want to stress that there are no completely

free (adjustable) parameters in our calculations; thus the

described algorithm is indeed a powerful tool for computer

simulations of superconducting transmission lines oper-

ational in the microwave frequency regime. .

VI. SUMMARY

We have developed a computer algorithm to model the

propagation of high-frequency signals on superconducting

planar transmission lines. In addition, we have proven the

accuracy of this algorithm by comparing the computed

propagation with controlled experiments that measured

picosecond pulse propagation on In superconducting

coplanar striplines. Our calculations included the frequency

dependence of phase velocity and attenuation of a signal

due to modal dispersion, dielectric loss, and the complex

conductivity of the superconducting lines.

An important implication of this work is that in very

low loss superconducting transmission lines the dispersion

becomes a dominant factor in the pulse propagation char-

acteristics-especially after a substantial propagation dis-

tance. In order to take full advantage of the low dissipa-

tion of signals at frequencies below the energy gap in a

superconducting transmission line, one needs to design the
/
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dimensions of the transmission line such that the cutoff

frequency for the onset of modal dkpersion is several

orders of magnitude above the energy gap frequency.

Alternatively, one may also use a matching dielectric su-

perstrata on top of’ the transmission line to minimize

modal dispersion. In such cases, the last impediment to

dispersion-free propagation is the superconducting energy

gap. The recent development of high-TC superconductors

[31] promises the possibility of such propagation for up to

tens of terahertz.

APPENDIX

The geometrical factors gl and

lines may be written as follows:

gz for coplanar strip-

for O < k G 0.707

for O.707< k <1.0

(Al)

g2 =17.34 (P’/ms)(li- w/s)

1.25 In 4mv 1.25t
—+1+—

“[1+ ++*(’+%112‘*2)
where k = s/(s + 2w), and

1

k[(l– ~1=)(1 – k2)3’4] ‘lg~

pt=
for O< k <0.707 (A3)

[(l-k)&]-l for 0.707< k <1.0.

The actual expressions for c‘ff and ZO utilized in our

computer model further employ a correction factor, d, for

the finite conductor thickness:

d = (1.25 t/n)[l +ln(4s/t)]. (A4)

Thus, the effective linewidth is w,= w – d, and the line

separation becomes St =s + d. For more details the reader

is referred to [19].
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